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Abstract: In the literature one can find evaluation of ratios of theta function

D forp = 2,4,5,7,9,25. The purpose of this article is to obtain evaluation
q 2 f(—q")
of —£59  for certain rational k with ¢ = e~27VE,

q24 f(—q%)
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1. Introduction
For any complex numbers a and ¢ with |¢| < 1, we define
(a:q)oo = TI (1 — ag™).

n=0

Ramanujan general theta-function f(a,b), [6, p. 197], is defined by

flab) = 3" ™3™ = (—a;ab)oc(~b; ab)wc(abyab)oo, lab] < 1. (L1)

n=—oo

He also defines [6, p. 197],

k(3k—1)

=) = f=¢,=) = > (D¢ 2 = (30 (1.2)
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For Im7 > 0, let ¢ = €™7. Then

—TiT

f(=q) = e n(7), (1.3)

where 7(7) denote the classical dedekind eta-function [4, p. 134].
The theta-function f(—g) has got nice connection with Rogers-Ramanujan’s
continued fraction [7, p. 365]

Ramanujan cubic continued fraction [7, p. 366]

3 g+ q® @+q* @+

q
G(ag) =
(9) L+ 1 4+ 1 4+ 1 40

lq| < 1,

and Ramanujan-Gollnitz-Gordon continued fraction [6, p. 229]

1/2 2 4
q q q
E(q , gl <1
For example
1 f(=q5)
= R(g) + 1 ,
R(q) & af(=q)
1 fo(=9)
“R(g)—11=—2—T
R5(q) @ 0/ (=)
1 ’ fP(=q)
—+4G2q} =27+ —(—5—=»
g+ 1Cw (="
1 ! (=%
— + E(q ] —16 = =—+——.
lE(Q) & ¢ I(=q°)
Thus, evaluating % for n > 2 plays an important role in evaluating
g2 f(—q"
continued fraction at ¢ = 6_2”‘/E, for k rational. In the literature can found the
evaluating ﬂ;@ forn =2,3,4,5,9,25.
¢ = f(=q")
The purpose of the article is to evaluate % for certain rational k, with
21 f(—q
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q= e~2mVk,
2. Main Result

Theorem 2.1. Forqg=¢ ™V z?n, let

An = 1f5(;q>7
6iq21 f(—q°)
then
A, AL = 1.

Proof. From [2, p. 43|, we have if a8 = 72, then

Consider

Employing (2.1) twice in the above, we obtain
A, A 1=1
Theorem 2.2. We have
(VDI
f(—e )
Proof. Setting n = 1 in Theorem 2.1, we obtain required result.

Theorem 2.3. We have
—27 1
) —e V3 3\ 8 1
i e (3) Ve

612\/§f(_€*4ﬂ'\/§) 2

and

() fleed) (g)é [6(3 - \/3)]‘1‘.

e f(—e )\
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(2.1)

(2.2)

(2.3)
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Proof. From [8, p. 74], we have

. f(—e;ﬁ)f(—e‘z’if) (2). (2.5)

f=emim3) f(—eva)
Also from [9, p. 55], we have

o eV )f(=e) (@)
iy (2)1(\/3+\/§). (2.6)

w
<
I

Multiplying the above two identities, we obtain (i). Setting n = 2 in Theorem 2.1
and then using Theorem 2.3 (i), we obtain (ii).

Theorem 2.4. We have

and B
(17) 6327:/5 f(_eifr) = !
fl=eva) vV V3nm
Where 1
8
221v/1+/3 [2+ \/3+ (80) x 25 — (100) x 2§}
n = 1 9
vz -1’
1 1 b
m = " + 1 - 5 1\
264+15V3  (6(2/ (a+ VI Ta)°) (3% 2% (a+ VAT + )
with )
a = 648 (\/3;) g 648f((f32>% + (5@25)%
22 v
and

b=36v2[3-2V3].

Proof. Let G, and g, be Ramanujan class invariants [3, p. 187], then we have

1

(Gn9n>8 (Gi - 92) = Z (2‘7)



V2

Explicit Fvaluation of Ratios of Theta Functions 79
1
Also, Ramanujan recorded G5 = 212 and Gay = (32;21);
—~1)3
Using value of G3 and Ga7 in (2.7), then solving the g3 and go7, we find that
4 1+ \/3
g3 = T
and
2 1 %
2+ \/3+ (80) x 25 — (100) x 23}
921 = 1 I
28 [V2—1]°
From the above two identities, we obtain
1 4 2 1 %
o f(—e_“‘/g)f(—e_?’“‘/g) B 2314/1 4+ /3 {2 + \/3 + (80) x 23 — (100) x 23
f(—e727Y3) f(—e=6mV3) (V2 1]
(2.8)
From [1], we have if ¢ = e >"V5 and p, = 4 —[=2
5% gtz f(—q?)
then
finptr =1, (2.9)
=1 (2.10)
and
1
3W3+5)\°
[y = (—) . (2.11)

we have from [5, p. 35], we obtain

3

2
) = 3Nn,u4n,u9n,u36n +— +3

(Mgn,u:sﬁn
o fogn 9 [36n

Hon fban

Setting n = 1 in the above, then using (2.9),(2.10) and (2.11), we find that

3 3
2 \/3vV3—5 x2—2—l\3/3\/§—5 ;c—?ilxﬁ/3\/§—5:o
6 12

2%
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where x = [iops -
Solving the above cubic equation for real roots, we find that

1 1 b
xr = + _ :

Va6 +15V3 - (6(2/ (a+ VI T @@)?) (3% 2% (ot VAP T )"

with )
a =648 (821)" ppas Py
()t ()

and
b=36v2[3-2v3].

By using the definition of pu,,, we find that

e J(me ™) (e )
e e Y

(2.12)

where
. L, 1 - b
V26153 (6(2/ (a+ VAT T a2))%> (3 2% (a+ VI + a2)%>
with )
_ V3-1)2 (v3-1) 432
=) O T Gy

and

b=36v2[3-2V3].

From (2.8) and (2.12), we obtain (i). (ii) follows from Theorem 2.1 and Theorem
2.4 (i).
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