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Abstract: In the literature one can find evaluation of ratios of theta function
f(−q)

q
n−1
24 f(−qn)

for n = 2, 4, 5, 7, 9, 25. The purpose of this article is to obtain evaluation

of f(−q)
q

6
24 f(−q6)

for certain rational k with q = e−2π
√
k.
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1. Introduction
For any complex numbers a and q with |q| < 1, we define

(a; q)∞ =
∞∏
n=0

(1− aqn).

Ramanujan general theta-function f(a, b), [6, p. 197], is defined by

f(a, b) =
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab, ab)∞, |ab| < 1. (1.1)

He also defines [6, p. 197],

f(−q) = f(−q,−q2) =
∞∑

k=−∞

(−1)kq
k(3k−1)

2 = (q; q)∞. (1.2)
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For Imτ > 0, let q = e2πiτ . Then

f(−q) = e
−πiτ
12 η(τ), (1.3)

where η(τ) denote the classical dedekind eta-function [4, p. 134].
The theta-function f(−q) has got nice connection with Rogers-Ramanujan’s

continued fraction [7, p. 365]

R(q) =
q1/5

1 +

q

1+

q2

1 +

q3

1 +

q4

1 +...
, |q| < 1,

Ramanujan cubic continued fraction [7, p. 366]

G(q) =
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 +...
, |q| < 1,

and Ramanujan-Göllnitz-Gordon continued fraction [6, p. 229]

E(q) =
q1/2

1− q+
q2

1− q3 +
q4

1− q5 +...
, |q| < 1.

For example

1

R(q)
−R(q) + 1 =

f(−q 1
5 )

qf(−q5)
,

1

R5(q)
−R5(q)− 11 =

f 6(−q)
qf 6(−q5)

,[
1

G(q)
+ 4G2(q)

]3
= 27 +

f 12(−q)
qf 12(−q3)

,[
1

E(q)
+ E(q)

]4
− 16 =

f 8(−q2)
q2f 8(−q8)

.

Thus, evaluating
f(−q)

q
n−1
24 f(−qn)

for n ≥ 2 plays an important role in evaluating

continued fraction at q = e−2π
√
k, for k rational. In the literature can found the

evaluating
f(−q)

q
n−1
24 f(−qn)

for n = 2, 3, 4, 5, 9, 25.

The purpose of the article is to evaluate
f(−q)

q
5
24f(−q6)

for certain rational k, with
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q = e−2π
√
k.

2. Main Result

Theorem 2.1. For q = e−π
√

2n
3 , let

An =
f(−q)

6
1
4 q

5
24f(−q6)

,

then
AnA 1

n
= 1.

Proof. From [2, p. 43], we have if αβ = π2, then

eπ(
β−α
12 )f(−e−2α)

f(−e−2β)
=

4

√
β

α
. (2.1)

Consider

AnA 1
n

=
1√
6
e(

25π
144 )

 f
(
−e−π

√
2n
3

)
f
(
−e−6π

√
2n
3

) f
(
−e−π

√
2
3n

)
f
(
−e−6π

√
2
3n

)
 (2.2)

=
1√
6
e(

25π
144 )

f
(
−e−2π

√
n
6

)
f
(
−e−2π

√
6
n

) f
(
−e

−2π√
6n

)
f
(
−e−2π

√
6n
)
 . (2.3)

Employing (2.1) twice in the above, we obtain

AnA 1
n

= 1. (2.4)

Theorem 2.2. We have

e

(
5π
24

√
2
3

)
f(−e−π

√
2
3 )

f(−e−2π
√
6)

=
√

6.

Proof. Setting n = 1 in Theorem 2.1, we obtain required result.

Theorem 2.3. We have

(i)
f(−e

−2π√
3 )

e
−5π
12
√
3f(−e−4π

√
3)

=

(
3

2

) 1
8

(3 +
√

3)
1
4

and

(ii)
f(−e

−π√
3 )

e
−5π
24
√

3f(−e−2π
√
3)

=

(
2

3

) 1
8 [

6(3−
√

3)
] 1

4
.
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Proof. From [8, p. 74], we have

e
π

3
√
3
f(−e

−2π√
3 )f(−e−2π

√
3)

f(−e−4π
√
3)f(−e

−4π√
3 )

= (2)
5
6 . (2.5)

Also from [9, p. 55], we have

e
π

2
√
3

f(−e
−2π√

3 )f(−e
−4π√

3 )

f(−e−2π
√
3)f(−e−4π

√
3)

=
(3)

1
4

(2)
1
4

(

√
3 +
√

3). (2.6)

Multiplying the above two identities, we obtain (i). Setting n = 2 in Theorem 2.1
and then using Theorem 2.3 (i), we obtain (ii).

Theorem 2.4. We have

(i) e
5π
√
3

24
f(−e−π

√
3)

f(−e−6π
√
3)

=

√√
3nm

and

(ii) e
5π

36
√

3
f(−e

−2π
3
√
3 )

f(−e
−4π√

3 )
=

1√√
3nm

.

Where

n =

2
1
24

4
√

1 +
√

3

[
2 +

√
3 + (80)× 2

2
3 − (100)× 2

1
3

] 1
8

[
3
√

2− 1
] 1

3

,

m =
1

4
√

26 + 15
√

3
+

1(
6
(
2/
(
a+
√

4b3 + a2
)) 1

3

) − b(
3× 2

2
3

(
a+
√

4b3 + a2
) 1

3

) ,
with

a = 648
(√

3−1√
2

) 1
2

+ 648
(
√
3−1)

√
2
(

5+3
√
3√

2

) 1
2

+ 432(
5+3
√
3√

2

) 3
2

and
b = 36

√
2
[
3− 2

√
3
]
.

Proof. Let Gn and gn be Ramanujan class invariants [3, p. 187], then we have

(Gngn)8
(
G8
n − g8n

)
=

1

4
. (2.7)
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Also, Ramanujan recorded G3 = 2
1
12 and G27 = 2

1
12

( 3√2−1)
1
3

.

Using value of G3 and G27 in (2.7), then solving the g3 and g27, we find that

g3 =
4
√

1 +
√

3

2
7
24

and

g27 =

[
2 +

√
3 + (80)× 2

2
3 − (100)× 2

1
3

] 1
3

2
1
6

[
3
√

2− 1
] 1

3

.

From the above two identities, we obtain

e
π
√
3

6
f(−e−π

√
3)f(−e−3π

√
3)

f(−e−2π
√
3)f(−e−6π

√
3)

=

2
1
24

4
√

1 +
√

3

[
2 +

√
3 + (80)× 2

2
3 − (100)× 2

1
3

] 1
8

[
3
√

2− 1
] 1

3

(2.8)

From [1], we have if q = e−2π
√

n
3 and µn = 1

3
1
4

f(−q)
q

1
12 f(−q3)

then

µnµ 1
n

= 1, (2.9)

µ1 = 1 (2.10)

and

µ4 =

(
3
√

3 + 5√
2

) 1
6

. (2.11)

we have from [5, p. 35], we obtain(
µ9nµ36n

µnµ4n

)2

= 3µnµ4nµ9nµ36n +
3

µnµ4nµ9nµ36n

+ 3.

Setting n = 1
4

in the above, then using (2.9),(2.10) and (2.11), we find that

x3 − 3

2
1
4

√
3
√

3− 5 x2 − 3

2
1
6

3

√
3
√

3− 5 x− 3

2
1
12

6

√
3
√

3− 5 = 0
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where x = µ9µ 9
4
.

Solving the above cubic equation for real roots, we find that

x =
1

4
√

26 + 15
√

3
+

1(
6
(
2/
(
a+
√

4b3 + a2
)) 1

3

) − b(
3× 2

2
3

(
a+
√

4b3 + a2
) 1

3

) ,
with

a = 648
(√

3−1√
2

) 1
2

+ 648
(
√
3−1)

√
2
(

5+3
√
3√

2

) 1
2

+ 432(
5+3
√
3√

2

) 3
2

and
b = 36

√
2
[
3− 2

√
3
]
.

By using the definition of µn, we find that

e
π
√

3
4
f(−e−π

√
3)f(−e−2π

√
3)

f(−e−3π
√
3)f(−e−6π

√
3)

=
√

3m, (2.12)

where

m =
1

4
√

26 + 15
√

3
+

1(
6
(
2/
(
a+
√

4b3 + a2
)) 1

3

) − b(
3× 2

2
3

(
a+
√

4b3 + a2
) 1

3

) .
with

a = 648
(√

3−1√
2

) 1
2

+ 648
(
√
3−1)

√
2
(

5+3
√
3√

2

) 1
2

+ 432(
5+3
√
3√

2

) 3
2

and
b = 36

√
2
[
3− 2

√
3
]
.

From (2.8) and (2.12), we obtain (i). (ii) follows from Theorem 2.1 and Theorem
2.4 (i).
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