J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 1 (2021), pp. 75-82

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

EXPLICIT EVALUATION OF RATIOS OF THETA FUNCTIONS

K. Shivashankara and G. Vinay

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysuru - 570005, INDIA

E-mail: drksshankara@gmail.com, vinaytalakad@gmail.com

(Received: Sep. 05, 2021 Accepted: Nov. 08, 2021 Published: Dec. 30, 2021)

Abstract: In the literature one can find evaluation of ratios of theta function $\frac{f(-q)}{q^{\frac{n-1}{24}}f(-q^n)}$ for n=2,4,5,7,9,25. The purpose of this article is to obtain evaluation of $\frac{f(-q)}{q^{\frac{6}{24}}f(-q^6)}$ for certain rational k with $q=e^{-2\pi\sqrt{k}}$.

Keywords and Phrases: Theta functions, Continued fraction.

2020 Mathematics Subject Classification: 11J70, 14K25.

1. Introduction

For any complex numbers a and q with |q| < 1, we define

$$(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n).$$

Ramanujan general theta-function f(a, b), [6, p. 197], is defined by

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} = (-a;ab)_{\infty} (-b;ab)_{\infty} (ab,ab)_{\infty}, \quad |ab| < 1. \quad (1.1)$$

He also defines [6, p. 197],

$$f(-q) = f(-q, -q^2) = \sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{k(3k-1)}{2}} = (q; q)_{\infty}.$$
 (1.2)

For $\text{Im}\tau > 0$, let $q = e^{2\pi i \tau}$. Then

$$f(-q) = e^{\frac{-\pi i \tau}{12}} \eta(\tau), \tag{1.3}$$

where $\eta(\tau)$ denote the classical dedekind eta-function [4, p. 134].

The theta-function f(-q) has got nice connection with Rogers-Ramanujan's continued fraction [7, p. 365]

$$R(q) = \frac{q^{1/5}}{1} + \frac{q}{1+1} + \frac{q^2}{1+1} + \frac{q^3}{1+1} + \frac{q^4}{1+1}, \quad |q| < 1,$$

Ramanujan cubic continued fraction [7, p. 366]

$$G(q) = \frac{q^{1/3}}{1} + \frac{q + q^2}{1} + \frac{q^2 + q^4}{1} + \frac{q^3 + q^6}{1} + \dots, \quad |q| < 1,$$

and Ramanujan-Göllnitz-Gordon continued fraction [6, p. 229]

$$E(q) = \frac{q^{1/2}}{1 - q} + \frac{q^2}{1 - q^3} + \frac{q^4}{1 - q^5} + \dots, \quad |q| < 1.$$

For example

$$\frac{1}{R(q)} - R(q) + 1 = \frac{f(-q^{\frac{1}{5}})}{qf(-q^5)},$$

$$\frac{1}{R^5(q)} - R^5(q) - 11 = \frac{f^6(-q)}{qf^6(-q^5)},$$

$$\left[\frac{1}{G(q)} + 4G^2(q)\right]^3 = 27 + \frac{f^{12}(-q)}{qf^{12}(-q^3)},$$

$$\left[\frac{1}{E(q)} + E(q)\right]^4 - 16 = \frac{f^8(-q^2)}{q^2f^8(-q^8)}.$$

Thus, evaluating $\frac{f(-q)}{q^{\frac{n-1}{24}}f(-q^n)}$ for $n \geq 2$ plays an important role in evaluating continued fraction at $q = e^{-2\pi\sqrt{k}}$, for k rational. In the literature can found the evaluating $\frac{f(-q)}{q^{\frac{n-1}{24}}f(-q^n)}$ for n = 2, 3, 4, 5, 9, 25.

The purpose of the article is to evaluate $\frac{f(-q)}{q^{\frac{5}{24}}f(-q^6)}$ for certain rational k, with

$$q = e^{-2\pi\sqrt{k}}.$$

2. Main Result

Theorem 2.1. For $q = e^{-\pi \sqrt{\frac{2n}{3}}}$, let

$$A_n = \frac{f(-q)}{6^{\frac{1}{4}}q^{\frac{5}{24}}f(-q^6)},$$

then

$$A_n A_{\frac{1}{n}} = 1.$$

Proof. From [2, p. 43], we have if $\alpha\beta = \pi^2$, then

$$e^{\pi\left(\frac{\beta-\alpha}{12}\right)} \frac{f(-e^{-2\alpha})}{f(-e^{-2\beta})} = \sqrt[4]{\frac{\beta}{\alpha}}.$$
 (2.1)

Consider

$$A_n A_{\frac{1}{n}} = \frac{1}{\sqrt{6}} e^{\left(\frac{25\pi}{144}\right)} \left\{ \frac{f\left(-e^{-\pi\sqrt{\frac{2n}{3}}}\right)}{f\left(-e^{-6\pi\sqrt{\frac{2n}{3}}}\right)} \frac{f\left(-e^{-\pi\sqrt{\frac{2}{3n}}}\right)}{f\left(-e^{-6\pi\sqrt{\frac{2}{3n}}}\right)} \right\}$$
(2.2)

$$= \frac{1}{\sqrt{6}} e^{\left(\frac{25\pi}{144}\right)} \left\{ \frac{f\left(-e^{-2\pi\sqrt{\frac{n}{6}}}\right)}{f\left(-e^{-2\pi\sqrt{\frac{6}{n}}}\right)} \frac{f\left(-e^{\frac{-2\pi}{\sqrt{6n}}}\right)}{f\left(-e^{-2\pi\sqrt{6n}}\right)} \right\}. \tag{2.3}$$

Employing (2.1) twice in the above, we obtain

$$A_n A_{\frac{1}{n}} = 1. (2.4)$$

Theorem 2.2. We have

$$e^{\left(\frac{5\pi}{24}\sqrt{\frac{2}{3}}\right)} \frac{f(-e^{-\pi\sqrt{\frac{2}{3}}})}{f(-e^{-2\pi\sqrt{6}})} = \sqrt{6}.$$

Proof. Setting n = 1 in Theorem 2.1, we obtain required result.

Theorem 2.3. We have

(i)
$$\frac{f(-e^{\frac{-2\pi}{\sqrt{3}}})}{e^{\frac{-5\pi}{12\sqrt{3}}}f(-e^{-4\pi\sqrt{3}})} = \left(\frac{3}{2}\right)^{\frac{1}{8}} (3+\sqrt{3})^{\frac{1}{4}}$$

and

(ii)
$$\frac{f(-e^{\frac{-\pi}{\sqrt{3}}})}{e^{\frac{-5\pi}{24\sqrt{3}}}f(-e^{-2\pi\sqrt{3}})} = \left(\frac{2}{3}\right)^{\frac{1}{8}} \left[6(3-\sqrt{3})\right]^{\frac{1}{4}}.$$

Proof. From [8, p. 74], we have

$$e^{\frac{\pi}{3\sqrt{3}}} \frac{f(-e^{\frac{-2\pi}{\sqrt{3}}})f(-e^{-2\pi\sqrt{3}})}{f(-e^{-4\pi\sqrt{3}})f(-e^{\frac{-4\pi}{\sqrt{3}}})} = (2)^{\frac{5}{6}}.$$
 (2.5)

Also from [9, p. 55], we have

$$e^{\frac{\pi}{2\sqrt{3}}} \frac{f(-e^{\frac{-2\pi}{\sqrt{3}}})f(-e^{\frac{-4\pi}{\sqrt{3}}})}{f(-e^{-2\pi\sqrt{3}})f(-e^{-4\pi\sqrt{3}})} = \frac{(3)^{\frac{1}{4}}}{(2)^{\frac{1}{4}}}(\sqrt{3+\sqrt{3}}).$$
 (2.6)

Multiplying the above two identities, we obtain (i). Setting n=2 in Theorem 2.1 and then using Theorem 2.3 (i), we obtain (ii).

Theorem 2.4. We have

(i)
$$e^{\frac{5\pi\sqrt{3}}{24}} \frac{f(-e^{-\pi\sqrt{3}})}{f(-e^{-6\pi\sqrt{3}})} = \sqrt{\sqrt{3}nm}$$

and

(ii)
$$e^{\frac{5\pi}{36\sqrt{3}}} \frac{f(-e^{\frac{-2\pi}{3\sqrt{3}}})}{f(-e^{\frac{-4\pi}{\sqrt{3}}})} = \frac{1}{\sqrt{\sqrt{3}nm}}.$$

Where

$$n = \frac{2^{\frac{1}{24}} \sqrt[4]{1 + \sqrt{3}} \left[2 + \sqrt{3 + (80) \times 2^{\frac{2}{3}} - (100) \times 2^{\frac{1}{3}}} \right]^{\frac{1}{8}}}{\left[\sqrt[3]{2} - 1 \right]^{\frac{1}{3}}},$$

$$m = \frac{1}{\sqrt[4]{26 + 15\sqrt{3}}} + \frac{1}{\left(6\left(2/\left(a + \sqrt{4b^3 + a^2}\right)\right)^{\frac{1}{3}}\right)} - \frac{b}{\left(3 \times 2^{\frac{2}{3}}\left(a + \sqrt{4b^3 + a^2}\right)^{\frac{1}{3}}\right)},$$

with

$$a = 648 \left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)^{\frac{1}{2}} + 648 \frac{\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{1}{2}}} + \frac{432}{\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{3}{2}}}$$

and

$$b = 36\sqrt{2} \left[3 - 2\sqrt{3} \right].$$

Proof. Let G_n and g_n be Ramanujan class invariants [3, p. 187], then we have

$$(G_n g_n)^8 (G_n^8 - g_n^8) = \frac{1}{4}.$$
 (2.7)

Also, Ramanujan recorded $G_3 = 2^{\frac{1}{12}}$ and $G_{27} = \frac{2^{\frac{1}{12}}}{(\sqrt[3]{2}-1)^{\frac{1}{3}}}$. Using value of G_3 and G_{27} in (2.7), then solving the g_3 and g_{27} , we find that

$$g_3 = \frac{\sqrt[4]{1 + \sqrt{3}}}{2^{\frac{7}{24}}}$$

and

$$g_{27} = \frac{\left[2 + \sqrt{3 + (80) \times 2^{\frac{2}{3}} - (100) \times 2^{\frac{1}{3}}}\right]^{\frac{1}{3}}}{2^{\frac{1}{6}} \left[\sqrt[3]{2} - 1\right]^{\frac{1}{3}}}.$$

From the above two identities, we obtain

$$e^{\frac{\pi\sqrt{3}}{6}} \frac{f(-e^{-\pi\sqrt{3}})f(-e^{-3\pi\sqrt{3}})}{f(-e^{-2\pi\sqrt{3}})f(-e^{-6\pi\sqrt{3}})} = \frac{2^{\frac{1}{24}} \sqrt[4]{1+\sqrt{3}} \left[2+\sqrt{3+(80)\times 2^{\frac{2}{3}}-(100)\times 2^{\frac{1}{3}}}\right]^{\frac{1}{8}}}{\left[\sqrt[3]{2}-1\right]^{\frac{1}{3}}}$$
(2.8)

From [1], we have if $q = e^{-2\pi\sqrt{\frac{n}{3}}}$ and $\mu_n = \frac{1}{3^{\frac{1}{4}}} \frac{f(-q)}{q^{\frac{1}{12}}f(-q^3)}$ then

$$\mu_n \mu_{\frac{1}{n}} = 1, \tag{2.9}$$

$$\mu_1 = 1 \tag{2.10}$$

and

$$\mu_4 = \left(\frac{3\sqrt{3} + 5}{\sqrt{2}}\right)^{\frac{1}{6}}.\tag{2.11}$$

we have from [5, p. 35], we obtain

$$\left(\frac{\mu_{9n}\mu_{36n}}{\mu_n\mu_{4n}}\right)^2 = 3\mu_n\mu_{4n}\mu_{9n}\mu_{36n} + \frac{3}{\mu_n\mu_{4n}\mu_{9n}\mu_{36n}} + 3.$$

Setting $n = \frac{1}{4}$ in the above, then using (2.9),(2.10) and (2.11), we find that

$$x^{3} - \frac{3}{2^{\frac{1}{4}}}\sqrt{3\sqrt{3} - 5} \ x^{2} - \frac{3}{2^{\frac{1}{6}}}\sqrt[3]{3\sqrt{3} - 5} \ x - \frac{3}{2^{\frac{1}{12}}}\sqrt[6]{3\sqrt{3} - 5} = 0$$

where $x = \mu_9 \mu_{\frac{9}{4}}$.

Solving the above cubic equation for real roots, we find that

$$x = \frac{1}{\sqrt[4]{26 + 15\sqrt{3}}} + \frac{1}{\left(6\left(2/\left(a + \sqrt{4b^3 + a^2}\right)\right)^{\frac{1}{3}}\right)} - \frac{b}{\left(3 \times 2^{\frac{2}{3}}\left(a + \sqrt{4b^3 + a^2}\right)^{\frac{1}{3}}\right)},$$

 $_{
m with}$

$$a = 648 \left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)^{\frac{1}{2}} + 648 \frac{\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{1}{2}}} + \frac{432}{\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{3}{2}}}$$

and

$$b = 36\sqrt{2} \left[3 - 2\sqrt{3} \right].$$

By using the definition of μ_n , we find that

$$e^{\frac{\pi\sqrt{3}}{4}} \frac{f(-e^{-\pi\sqrt{3}})f(-e^{-2\pi\sqrt{3}})}{f(-e^{-3\pi\sqrt{3}})f(-e^{-6\pi\sqrt{3}})} = \sqrt{3}m,$$
(2.12)

where

$$m = \frac{1}{\sqrt[4]{26 + 15\sqrt{3}}} + \frac{1}{\left(6\left(2/\left(a + \sqrt{4b^3 + a^2}\right)\right)^{\frac{1}{3}}\right)} - \frac{b}{\left(3 \times 2^{\frac{2}{3}}\left(a + \sqrt{4b^3 + a^2}\right)^{\frac{1}{3}}\right)}.$$

with

$$a = 648 \left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)^{\frac{1}{2}} + 648 \frac{\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{1}{2}}} + \frac{432}{\left(\frac{5+3\sqrt{3}}{\sqrt{2}}\right)^{\frac{3}{2}}}$$

and

$$b = 36\sqrt{2} \left[3 - 2\sqrt{3} \right].$$

From (2.8) and (2.12), we obtain (i). (ii) follows from Theorem 2.1 and Theorem 2.4 (i).

Acknowledgments

The authors would like to thank referees for their useful and valuable comments.

References

- [1] Baruah N. D. and Saikia N., Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction, J. Comp and Appl. Math., 160 (2003), 37-51.
- [2] Berndt B. C., Ramanujan notebooks, Part III, Springer-Verlag, New York, (1991).

- [3] Berndt B. C., Ramanujan's Notebooks, Part V, Springer-Verlag, New York, (1997).
- [4] Cooper S., Ramanujan's theta functions, Springer, Cham., (2017).
- [5] Khaled A. A., A study on q-series, continued fractions and modular equations motivated by the works of S. Ramanujan, Ph.D. thesis, University of Mysore, (2013).
- [6] Ramanujan S., Note books (2 volumes), Tata institute of fundamental Research, Bombay, (1957).
- [7] Ramanujan S., The Lost Notebook and Other Unpublished Parer, Narosa, New Delhi, (1998).
- [8] Srivatsa B. R., Some studies in the field of special functions influenced by Ramanujan, Ph.D. thesis, Visvesvaraya technological University, (2008).
- [9] Vasuki K. R., Some studies in the theory of special functions and number theory, Ph.D. thesis, University of Mysore, (2000).